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ENERGY LOSS BY NUCLEAR ELASTIC SCATTERING

by

Joseph J. Devaney and Myron L, Stein

ABSTRACT

The rate of energy loss suffered by & heavy charged
particle from nuclear forces elastic scattering,
plus nuclear Coulomb interference, is derived, and
the rate for protons, deuterons, and alphas into
deuterium is given as a function of incident energy.

I, Introduction. In the problem of energy loss of
heavy charged particles at low energies in matter,

one must consider the loss of energy of the particle

to electrons by Coulomb interaction, to nuclei by
Coulomb and hadronic elastic scattering (plus their
interference), to nuclei by nuclear reactions, and
by nuclear bremsstrahlung (small). An easy compu-
tation of the energy loss per unit path from the
first two processes 1is afforded, for example, by
the work of Longmire.l The present paper gives the
energy loss from the next two processes in the same
form and with the same assumption as Longmire's
work. Namely, we offer formules and a few selected
computations for the energy loss of a charged par-
ticle due to nuclear force elastic scattering plus
nuclear Coulomb interference. The particle-to-
electron and particle-to-nucleus pure Coulomb
losses are to be found in Longmire.

We deem it not appropriate to include the
specifically nuclear Coulomb energy loss in our
examples, for its magnitude depends on the assumed
electron temperature and density. However, the

lC. L. Longmire, Elementary Plasma Physics, Inter-

science Publishers, New York, 1963, pege 203.

nuclear forces-nuclear Couloub interference term is
integrable without need of a cutoff and thus is not
so dependent, It is therefore included.

It should be noted that the Coulomb scattering
of the charged particle by both electrons and nuclei
is strongly peaked in the forward direction so that
energy loss per path length is a useful description.
However, hadronic scattering of unlike particles may
even be peaked in the backward direction so that its
contribution leads to a more erratic path. Nonethe-
less, energy deposition or loss per path length was
Jjudged to be relevant because such losses are in the
same format as Coulombic losses, are relatively easy
to obtain, and are model independent. Should had-
ronic energy deposition be dominant, one may wish to
consider calculations such as the Monte Carlo types
in order to follow energy deposition more precisely.

For identical particles we choose to follow
the most energetic resultant particle so that the
maximm laboratory scattering angle per collision
will be 45° and we will thus give the average en-
ergy loss as a function of path of the most ener-
getic remainder of each collision.

In Longmire's formula (9-58), p. 203, the ap-
proximations are equivalent to temperature, T = 0,




for the target nuclei, We also accept this approx-
imation which is good for incident energies large
compared to target temperature and which places our

theory on & par with Longmire,

II, Theory -- Kinematics.
per unit path from elastic scattering, dﬁs/dx, is
given by the average energy loss from scattering
per collision, Ws , times the probability of a col-

The average energy loss

lision per scattering center, s times the number

(atoms) of scattering centers per unit volume, NA’

Thus,

W,
E=AWS' OT.NA. (1)

The average energy loss per collision, A_Ws, is re-
lated to the energy loss from en elastic scattering,
Aws(e), at center of mass angle, 8, by the expres-

sion

2r 1
Ws:T’lEfo 84 (8) - ol(8) + an,  (2)

cos §=-1

dcs/dﬁ = c;(e) being the differential elastic scat-
tering cross section at angle 8 into solid angle
dl. The total cross section is Cipe

Suppose a particle of mass m1 and charge z.l
with velocity vo strikes a stationary particle of
mass m, and charge 22 8o as to be scattered through
an angle GL in center-of-mass angle 8 with a proba-
bility c; , the recoil particle having a labora-
tory velocity vy and giving rise to a center-of-
mass recoil velocity of Vo = V, the velocity of the

center of mass, (See Fig. l.).

m J] Vo ":l
Before After
Fig. 1. Laboratory system.

Before

After

Fig. 2. Center-of-Mass system,

In the center-of-mass triangle, Vo Yy VL’ of

Fig. 2 "after," the law of cosines gives

> gcos‘i =2v§(l- cos 8). (3)

Now the energy loss per scattering,AW , is just the

-4
energy gained by my,

2
o 2
———

(H+m2)2 o

(1-cos?),

(&)

- - _
Aws—emva—mgve(l cosd) =

where we have used the constancy of momentum,

Ve = (my ¥ mp) Vo= (it my) v,

Substitution of (4) with W = £ mv2, an = 2wdcos?,
and Z = cosb, yields the logarithmic energy loss
from elastic scattering,

— 1
102, g _ il 0 (2) « (1-2)az, (5)
NW 3 &

A (my +m)" J )

where cr's is in barns/steradia.n, NA is in atoms/cubic

centimeter, and x is in centimeters,

III. Theory -- Unlike Particles. Heretofore our
theory applied to like or unlike particles.

specialize to the form seen by unlike particles

We now

only.

The differential scattering amplitude, f, is
related to a; by 2

2

Any text on scattering theory; for example, A,
Messiah, Quantum Mechanics, John Wiley, New York,
1958, pege I3T2.




o =12 (6)

For unlike particles under both Coulomb and nuclear
forces, £ is of the form

f= fc + fN’ (7)
with
f, =~ ———7—2—9- exp[ iyﬂn(sin —) + 2ic ]
2k sin 3
(7o)
leee2
Y= v UOE arg ['(1 + 17),
and

=S

£=0

Py(cosd), ()

with ) being constants and P being the Legendre
polynomials.
Equation (7a) is from Messish, p, 1421, 422;
(7o) is from p. I386. Substituting
2sin2%=1-cose =1l-2

and using the fact that PE(Z) is just a polynomial
of degree £, we have

£ = - gty [ 1yzn(1 z) + eio;l (8a)

and
2
£, = z v, 7, (8b)
20

where bZ are (new) constants,

Observing that fc has a pole for 2 = 1, we
expect the Coulomb term to dominate near such a pole
and, as it turns out, it is then also small for Z
<< 1 (large angles), Further, the interference term
is jmportant only for a small range of Z; moreover,
the exponent of (8a) is only weakly dependent on
Z through the logarithm. In addition, the pure Cou-
lomb term lfcle, which ig just classical Rutherford
scattering, does not depend on the exponent at all,

Consequently we can make & good* approximation by
writing

b

= =1
LEEoD (9)
where b 1 is taken constant with Z (which is done

for the interfence term only).

Actually we can describe the effect of b_1
varjation to any desired degree of accuracy by
simply choosing I sufficiently large.
(7), (8b), and (9) now yield the form of our scat-
tering amplitude:

Equations

b3

f= zl—m-i-b + b Z+..-*b2'ZI (10)

Insertion into (6) gives the differential scattering
cross section with new (real) constants, d:

dy 2F
v —
Oy = Gg* T ogy ot 2t tdp 2T, (11)

where the well-known Rutherford scattering cross
section is

lb_l ‘2 2 ZeZaek(m1+m )
og = ~—5 15 - - (12
(1- Z) by sin 5 m2(l- Z)

The remainder of a's we label

Opy®™ G5 - O (13)

d
the interference term ﬁ%g o.f[, and the nuclear

term

27
& = 2 4, 2,

£=0
althouvgh the labels thus made are not strictly ac-
curate (the nuclear part contains some of the inter-
ference contributions). Since we desire the elastic
scattering energy loss less the pure Coulomb part,
ve gubstitute (11) less c;‘ into (5) and perform the
integration, obteining thereby the logarithmic ener-
gy loss from nuclear scattering and the interfer-
ence of that with nuclear coulomb scattering:

¥
In D(p,p)D, for example, we calculate that for [ =

2, E = 1.5 MeV the variation of b.} has an effect
of less than 2.4% on the full result, in the range
from Z = 0,9 to Z = 0,5 (the region of greatest in-
terference). There is less error for higher I
greater for lower E. See "us
(k).

2
e" discussion after



oF 281
Snmlmaa 4 +z ni}f_ z ndra (14)
(my + mp) 20 =]

even odd

vwhich is our result for the average energy loss of
a particle traversing an unlike material of atom
density, NA’ whose total differential scattering
cross section in barns per steradian is of the form

(11) and (12). Call this quantity V.

Our most accurate eveluation of the energy
loss, v, is by digital computer in that we effec-
tively fit (to any desired accuracy) the experi-
mental data by the form (11) using a least-squeres
procedure, The coefficients thereby obtained are
inserted into a form of (14) to yield ¥.

For completeness, however, we exhibit a
method of hand calculation. We begin with 2 = 1
so that

a
] ) -1 2
of = Opt [Togy tdo* &2+ 42 (15)

and the bracket of (1k4) is

d d
1 2
[d_l+do-3 +3]. (26)
01" can be calculated and cl'q extrapolated to give a
crude estimate of d—l from

d'-l

= l- I- I= R
0= % "% "% "1-2

- 0 d = ’
Then, labelling o; = oy (2 =*1), o) = gy (2 = 0),
we find that

L ! ?
J, = d0+d1+d2’ c = do- d1+d2, Oo = do- (17)

Solving for the d's and substituting in (16) and
(14), we have

2h  aw 8
ve=0_, d.x_s =_nﬁ22[3d l+2¢6+a:]. (18)
MY N 3(mrm) L T

The prescription for use of this formula is
to calculate c;‘, (12) extrapolate "1'v from low Z
(or high 8) in the center of mass, in order to ob-
tain a'I and thereby d_,, and finally use the meas-

¢ ’

] (] L]
ufedcr?atZ—o, -l'f.oget o‘oa.nda_, oy = g
CR - O Note that o, which is very difficult to

estimate, does not appear in (18) because forward
scattering implies zero energy loss.
Similarly, for more accuracy, one may put I =
2 and then one needs to add two more estimates of
. 1
Oy 88Y, at 2 = :h-e- -- call them ot%, respectively,

8 _mm

— =2 _lhsq _+ 80, +6c + 2hd’ +'(c'_], (19)
‘#5(m1+m2)2[ 1T o *

where again c'+ drops out,

Such hand calculations can give only crude an-
swers since they depend critically on the accuracy
of the selected cross sections at Z = O, +1/2, -1.
Use of a digital computer a2llows us to fit the whole
range of the cross sections with a least-squares
Thus we
can determine the parameters in the energy deposi-

polynomial curve of any desired degree,

tion as accurately as the experiment itself permits,

Accordingly, we return to (11) and form the
expression

2841

ZE (1-2) [a;- a;(] = 2 enZn . (20)

n=0

The multiplication of the polynomial b dnzn of
(11) by (1-2) leads to the polynomial & of (20)
with the constants

= d_1+ do, enﬁo = dn- dn-l’

nfel+1

Solving for the d's and substituting into (14%) gives

% €5f+1 = 9oF ¢



I

ve 1024 an _ Smmm, . ey (21)
NA W dx (ml+ me)a & 2m+)

Thus, for each given energy, W, the computer is
given an f and a table of a; versus Z, From these
values, the 2s of (20) is determined for each Z and
a standard least-squares polynomial curve of degree
2F+1 is formed3 yielding the coefficients e . The
even indexed coefficients are then used in (21) to
evaluate the desired energy loss,v¥.

The derived least-square values of c's , as well
as the sum of the variances of Z,are also printed by
the computer so that the accuracy of the fit can be
determined. 1In every case of our examples, the fits
were within experimental accuracy.

IV, Theory -- Like Particles. As is well known,
identical incident and target particles lead to
some theoretical complication and also to an advan-
tageous symmetry. Even in the Coulomb temm,these
effects change the whole character of the cross

section, and, further, the Coulomb cross sections
differ for different spin particles., The particles
we are interested in have spins of O, %, 1,80 we
shall confine ourselves to these values, Extension
to other spins, we believe, is straightforward. Mes-
siah,Z pages 606 to 608, may be referred to for the
underlying theory. Note that all cross sections
are symmetric about 90° in the center of mass, so
our expansions are even in Z,

A. Spin O. Since we cannot dlstinguish whether the
incident or target particle is detected at angle
9¢, the quantum mechanical cross section for observ-
ing either particle at 6§ becomes

o, (88) = | £(8f) = £(m-8, p+m)|? epinless
(22)
+ for a boson, - for a fermion, if £(8¢) is the
distinguishable scattering amplitude. Thus for
(for example @ on @), using the
form (8) and (10), (cos(m-8) = - cosb = -Z):

zero spin, bosons

3See D, D, McCracken and W. S. Dorn, MNumerical
Methods and Fortran Programming, John Wiley, New
York, 1G6%4, pages 262 - 275.

£(8) + £(m-8) = £(2) + £(-Z) =
I
£(2) +2,(-2) +2 Z v 2" (23)

n=0
even

Teking the square, the Coulomb part, o) = |f (2) +
fc( -z)|2, is composed of three terms:

£(2)]|? = 52—,
|.(2)] K*(1-2)%

which is Jjust c& of (12), incident scattering in

center of mass angle 0.

2
2 y
| fc( "z) I = ] 2 ?
X°(1+2)
which is al" except that the struck nucleus goes off
in the direction 8.

£.(z) £2(-2) + £X(2) £ (-2) =

ez
¥2(1-2°)

272 cos (7 £n ﬂ)

(24)

(after some manipulation) which is the Coulomb~
Coud.omb interference term, a wholly nonclassical
effect.

Thus the Coulomb part has the form* (using in
(12) 2.1 = 22 a.ni.m:L =m2)

Z.2e2
2 1-Z
I 4 2 cos(——— £n —)
, 22e \- 1 1 L A 1+2Z
[+ = +
co “2

with

£25)

(1-2)2 (1+2)2 (1-22)

? , ,
=0 + 0,
°so co NI °

(26)

and (efter further manipulation)
(23) squared is of the form

the remainder of

4 z
, . o
Ont = T a0 Y ) dpZ o (27)

*Note that these Coulomb terms differ for different
spins alone; thus, this spin zero term is not the
same as that for spin 1/2 particles of the same
mass and charge, the latter called Mott scattering,
nor is it the same as spin 1, etc.

>



which is the nuclear-Coulomb interference term plus
the pure nuclear terms. These are not form de-
pendent on spin, so we need not carry explicit spin

dependence in them.

It appears most useful to follow the most en-
ergetic resulting particle from each collision, so
we integrate on center of mass angle from O to 90°
only (2 from O to 1)*, in substituting (27) into (5)
to obtain (u& = ma)

ou 2T
NAW dx NI

2 d

ﬂd_zne"-ﬂzlm)%(‘m, (28)
m=0

which is our energy deposition per unit path length
of the most energetic spin zero particle from had-
ronic and hadronic-Coulomb interference elastic
scattering, when the total elastic scattering has
the form (26), (25), and (27).

4
For hand calculation we again define °t,l§ ,0
to be

al" E o's - uéo- a:'[ (Z = +1, +$,0, respectively);

we calculate o;o from (25), estimate first o, from

N
o' less o , and then estimate o’ to obtain
8 co I
d-
a in ol ~ .
T

Algebraic manipulation then yields, for 7=1

1024 W,

\I/: ——— s =
NAW dx NI

1;—2[(12 in 2)a_ + Sop+ a'+], (29)

or

%[(6 tn2)a_+ o)+ 254‘;],

ye also avoid thereby counting particles twice.

which formule is exact when

' ] d- 2
g =0+ +4d +d4d.Z2.
8 co (1_z2) [ 2
For £ = 2, .
\y=%5[60d_ fn 2 + 130, + 160 + c;], (30)
v
' ] d- 2 L
exact for 0 =0+ +d, +d4.,2 +duz.
8 co (l_za) 0 2

For machine calculation, we form

A
@= (1)l o) = > el (31)
m=0

since multiplication of (27) by (1-22) yields an

even polynomial of degree 2(Z+l), with e, =d_+d,,

ey = den- d?n-a for n = 1 to I, and & Fip = "121‘

Solving for the d's and substituting in (28)

gives
MW & [
- \
1 I n
1
™ fn 2 z €on” T z “2n+2 [ (2m+15(2m+25].(32)
n=0 n=0 m=0

As in the unlike particle case, for each given
energy, W, the computer is presented a value of z
and a table of c; vs Z, For each value of Z, &
value of g is calculated and then ¢ is formed
from (31).
powers and of degree 2 + 2 is fitted to the ® vs

Z values.

A least-squares polynowial of even

The resulting coefficients e, are used
in (32) to obtain the energy deposition, ¢. The
computer also prints the sum of the variances plus
the derived a; vs Z in order to check the goodness
of fit,

B. Spin -é—. Spin -2]= particles are fermions so that
the total wave function must be antisymmetric. Thus, '
when the total spin, S, of the incident and target
particle is symmetric, S = 1 (triplet state-
probability 2-), the space part must be antisymmetric,

When the spin part is antisymmetric, S = 0




(singlet-probability 11;) , the space part is symmetric.
Thus the scattering cross section has the form (sym-
metric in ¢ , i.e., no polarization measurements,
ete.)

°$% - 13: 1,(8) - ft(ﬂ-e)\2+11; £.(8) + £ (m-8) 2 (33)

with ft’fs being the triplet and singlet scattering
emplitudes, respectively.

Similarly to {23) the two texms above have
the forms

z
£(2) -2 (-2) +2 z e 2" (3W)
n=1

L}

ft(e) - ft(ﬂ-e)

odd
and

Z
£(2)+2 (-2)+2 z anzn. (35)
n=0

n

£,(8) - £_(1-8)

even

Squaring, the specifically Coulomb terms are
easily obtained and differ only in the numerical

coefficient of the Coulomb-Coulomb interference,
(ek),

I L
o'y = Z2e I- 1
2 ]_(1-z)2

+ - °
(1-2°)

2
de 1-2
cos\ 355~ £n 337
= , (36)

(1+42)°

which is the well-known Mott formule for the Cou-
lomb scattering of spin % identical particles.

The remaining terms of (33), a;n, are, in fact,
of the form (27)

d

z
c{ﬂ- = +Zdamzem

h 2
(1-2%) m=0

(21)

for some constants d. This can be shown by a

tedious calculation, but 1s more simply noted by
observing that the form of (34) is

27 a

(1-29)

+2a%+ 2a3z3 +aee s

and that of (35) is

28--
+ 2ao

2
3 +2a.zz cee 3
(2-27)

2
vhich upon squering end incorporation of a_ terms
into (36) leaves us with terms exactly of the form
(27) and of meximm degree 27,

Since ol'u 18 the seme in form for spin % as
for spin O, the same formalism applies, and, except
for the pure Coulomb cross section which should now
be ¢’; of (36), the hand calculetions of ¥ are given
by (29), £ =1, and (30), T = 2.
lation is given by (32).

C. Spin 1. Spin 1 particles are bosons with total
symetric wave functions; therefore, the system of
incident and target identicel particles must be
space symmetric for total spin, S = 2, probability

The machine calcu-

g— ; space antisymmetric for S = 1, probability %;
and space symmetric for S = O, probability %—. Con-

sequently (¢ symmetric),

of = 3|5a®) + 2m)|? + 3 z,0)- £ (n-0)|%

3 POREACOIS (37)
Again, although differing in value for different
hadronic amplitudes, fi, indeed, differing among
the several spln states, S = 2, 1, O as well as
from spin é of the preceding section, the forms

of the amplitudes are

z
£,(8) - £,(m-8) = £.(2) - £ (-2)+2 z a) 2" (34A)
=1
oad
and
z

fi(e) + fi(n-e)

£(2) +5,(-2)+ 2 z 82 (354)
n=0
even

Again, squaring leads to the pure Coulouwb term dif-
fering only in the interference part, (24),

22e?
cos( 2 £n l'-z)

A vo 1+2

(1-2%)

hh[
Z,e
o . = 2 1 + 1 "

ol gt |_(1-z)2 (142)%

W

»(38)

vwhich differs from both spin O, Eq., (25), and spin
%, the Mott formula, Eq. (36).



The remainder of o'sl’ namely the absolute
squares of (34A) and (35A) less pure Coulomb, leads
again to terms identical to the form of (27) so the
spin O formalism applies except that all pure Cou-
lomb terms should have a(':l, Eq. (38), as the cross
section rather than cr":o.
The hand calculations of ¥ are given by (29),
Z =1, and (30), 7 = 2. The machine calculation is
given by (32). But in fitting the experimental
cross sections, the pure Coulomb part is, of course,
Uél'
V. Numerical Examples.,

A, Energy deposition by elastic scattering of
The calculations in this sec-
tion are based on the comprehensive summary by Sea-
grave,
et a.l.5
MeV incident protons.

protons in deuterium,

We used the neutron cross sections of Allen
to estimate the energy loss at O.1l- and 0.2-
Formula (20) was used to fit
the date as described, with data-extrapolated end

points added. That is, the wachine fit can go wild
beyond the range of experimental points, especially
when the data do not cover small enough or large

enough angles.
linear extrapolated point was added to preserve the
expected form,

In these instances a graphical or

We used the minimum-degree poly-
nomial consistent with a fit as good as experiment
allowed. % is, of course, expected to increase at
higher energy, and so it was found. We used Z=1
at 0.1 and 0.2 MeV and ranged to £ = 4 at 1L Mev,
depending on the data.

The results ere shown in Fig. 3, which gives
the energy loss from nuclear forces elastic scat-
tering plus the interference of that scattering with
nuclear Coulomb scattering as given by (21). The
values do not include nuclear Coulomb scattering,
The points are keyed to the accompanying experimen-

tal references,

B, Energy deposition by elastic scattering of
alphas in deuterium. The angular Heh(d,d) Hek cross-

section data upon which this section is based were
frequently more sporadic than, for example, those in

the preceding D(p,p)D. Indeed, the points labelled

In

J. D, Seagrave, International Conference on the
Three-Body Problem in Nuclear and Particle Physics,
Birmingham, July, 1969. Also LA-DC-10638 and pri-
vate communication, 1970.

%, Allen, A. T. G. Ferguson, and J. Roberts, Proc.
Phys. Soc. A68, 650 (1955).

8

Blair et al., and Celonsky et al, in the references
for Fig. 4 are a combination of their data, with
Blair et al. providing the small-angle data and Gal-
onsky et al., giving the mid and large angles. Since
our polynomial fit is to the experimentally derived
points of 23, Eq., (20), the resulting curve of o'; vs
Z can go wild between widely spaced experimental
points, We controlled these excursions in occa-
sional sparse data regions by adding a point ob-
The result-

ing fits are thereby optimized and appear to be as

tained from smooth graphs of the data,
good as experiment, However, in some instances,
particularly near the resonance for Ea = 2,13 MeV,
experiment and, consequently, the fits were obvious-
ly erratic. The results from such fits were given
less weight in the final curve.

D. C. Dodder and his colla.boratorsé kindly
provided us with cross sections based on tneir phase
analysis of the date., The results from such data
enabled us to detail the Ea = 2,13-MeV resonance
better and were crucial in determining the curve at
low energy.

As before, we fit the data using (20) and
thereby determined the parameters e that were used
to calculate the energy deposition of alpha particles
per path length in deuterium by means of (21), ex-
hibited in Fig. 4. We used high Z if the data war-
ranted; actual 's used ranged from 2 to 5. Again,
the results are only for nuclear scattering and that
interfering with Coulomb, The points are keyed to
the accompanying references.

C. Energy deposition by elastic scattering of
The D(d,4)D data as a func-
tion of angle ranged from 4 points to 25 points, but
fortunately the angular momentum involved was low,

L < 2, implying 7 = 2 except for possible added
flexibility needed for interference term variation,
see (9) and following remark. Indeed, we often got
very good fits even at high energy with £ = 2, al-
though wherever it appeared more advantageous we
went to £ = 3 or even k. The only edded point was
to E; = 0.87 MeV, which resulting energy loss cal-
lation was rejected, see Fig. 5.

deuterons in deuterium.

Dodder et al. 6

tions.

provided theoreticel cross sec-
These were especially valusble at low energy

6,
D. C. Dodder, M, Peacock, and K. Witte, private

communication, September 10, 1970. We are indebted
to these individuals for their helpfulness,
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O Brown, Freier, Holmgren, Stratton, and
{arne].‘)k, Phys. Rev. 88, 253 (1952).
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Mather, Phys. Rev. 81, 37 (1951), (Wash,)
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W. D. Simpson, Ph.D, Thesis, Rice Univer-
sity (1965).

J. C. Allred, Phys. Rev. 91, 90 (1953).
(LASL)

W. T. H. Van Oers, Nuclear Forces and the
Few-Nucleon Problem, Pergamon, London, 1960,
Vol, I, p. 285,

We T. H, Van Oers and X, W. Brockman, Kucl,
Phys. 21, 189 (1960), (Amst.)
Kikuchi, Sanda, Sowa, Hayashi, Nisirmura,

and Fukinaga, J, Phys, Soc., Japan, 15, 9
(1960). (Tokyo)
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Fig. % Energy gain of D from D{c,a)D (includes Coulomb interference, but not Coulomb).

References for Fig. 4. All are ¢’ Keh(d,d.)nek.

© D. C, Dodder, M, Peacock, Theory, Ref, 6 ¢® L. s. Senhouse and T. A, Tombrello, Kucl.
(1970). (14SL) Puys. 57, 624 (1964). (CIT)

3 Blair, Freier, Lampi, and Sleator, Phys. A 6. G. Ohlsen and P, G. Young, Nucl. Phys.
Rev, 75, 1680 (1949). (Minn.) Also inter- 52, 134 (1964). (Canberra) Also private
polated, to combine with communication, G. G. Ohlsen (1970). It

is a pleasure to acknowledge Ohlsen's
Galonsky, Douglas, Haeberti, McEllistrem, kindness.
and Richards, Phys. Rev. 98, 586 (1955).
(Wisc.)
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References for Fig. 5. ¢ D(4,3)D.

© D. C. Dodder, M. Peacock, K. Witte, Theory, V Vilson, Taylor, Legg, and Phillips, Nucl. Phys.
Ref, 6 (1970). (LASL) A126, 193 (1969). (Rice) :

A Blair, Freier, Lanipi, Sleator, and Williams, Q Brolley, Putnam, Rosen, and Stewart, Phys. Rev.
Phys. Rev. T4, 1594 (1948). Corrected by a 117, 1307 (1960). (LASL)
footnote in Blair, Freier, Lampi, and Sleator,
Phys. Rev. 75, 1678 (1949). (Minn.) / L. Rosen and J. C. Allred, Phys. Rev. 88, k31.

7/  (1952). (rasL)
@ A. D. Bacher and T, A. Tombrello, Nucl. Phys.
A3, 557 (1968). (cIT) \s Allred, Erickson, Fowler, and Stovall, Phys.
A Rev, 76, 1430 (1949). (LASL)




for they enabled us to extend our determination of
energy loss below 1 MeV,

In this identical particle, spin 1, case (31)
was used to fit the data, but with (38) as the pure
Coulomb part. The resulting parameters e were sub-
stituted into (32) to obtain the energy loss from
nuclear forces elastic scattering plus nuclear-
Coulomb interference per path length of the most
energetic deuteron. Note that nuclear Coulomb scat-
tering is not included., These results are plotted
in Fig. 5, the points being keyed to the accompany-
ing references,

Vi. Index and Summary of Results,
energy loss or deposition due to nuclear forces

This paper gives

elastic scattering plus the nuclear force-nuclear
Coulomb interference, but excluding the pure nuclear
Couwlomb scettering., The pure nuclear Coulomb scat-
tering cross-section formulas, however, are given.

The latter may be found as follows,

For unlike perticles, Eq, (12), p. 3.

For like particles of spin 0, Eq. (25), p. 5.
For like particles of spin %, Eq. (36), p. T.
For like particles of spin 1, Eq, (38), p. 7.

A, Energy loss -~ theory

1., Unlike particles. For a cross section, o;,
described by (1l) and (12), page 3, the nuclear and
To cel-
culate the loss from a graph of cr; ve Z by hend, we
define o‘é’ i, £ % (z = cos 8, 3%, £1, respec-
tively) as being the nuclear part and d._l es the in-
terference constant, see (15), page 4; the energy
losses are then given for £ = 1L and 2 by (18) and
(19), page 4, respectively,
calculation is to fit the experimental cross-section
data minus pure Couwlomb in the form of (20), page &,
with a least-sqQuares polynomial curve, thus evalu-
used to determine ¥ in

interference energy loss is given by (1h4).

Our method for machine

ating the coefficients e
(21), page 5.

2, Like particles, Except for the spin-de-
pendent Coulomb formulas noted above, (25), (36),
and (38), the nuclear and interference parts have
the same form among llke particles, and so can be
described together. With theat qualification, then,
for a cross section, o;, described by (27), page 5,

12

plus the appropriate pure Coulomb part ebove, (25),
(36), or (38), the nuclear and interference energy
loss is given by (28).
from a graph by hand, one estimates the nuclear

To pick off the energy loss

part, 06

the appropriate c; and the form (27). Then (29) or
The method

for machine calculation is to fit the experimental

N U_& N c;, and the interference temm using
(30), page 6, yields the energy loss.

cross section less Coulomb in the form of (31),
page 6, with a least-squares polynomial of even
powers whose coefficients, e enable the result,
¥, of (32), page 6, to be evaluated.

B, Energy loss -- numerical values.

1. For D(p,p)D the results are given in Fig. 3
page 9.
2. For D(o,x)D -- Fig. I, page 10.

3. For D(d,d)D -- Fig., 5, page 1l.
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